100 research outputs found

    A neural model of border-ownership from kinetic occlusion

    Full text link
    Camouflaged animals that have very similar textures to their surroundings are difficult to detect when stationary. However, when an animal moves, humans readily see a figure at a different depth than the background. How do humans perceive a figure breaking camouflage, even though the texture of the figure and its background may be statistically identical in luminance? We present a model that demonstrates how the primate visual system performs figure–ground segregation in extreme cases of breaking camouflage based on motion alone. Border-ownership signals develop as an emergent property in model V2 units whose receptive fields are nearby kinetically defined borders that separate the figure and background. Model simulations support border-ownership as a general mechanism by which the visual system performs figure–ground segregation, despite whether figure–ground boundaries are defined by luminance or motion contrast. The gradient of motion- and luminance-related border-ownership signals explains the perceived depth ordering of the foreground and background surfaces. Our model predicts that V2 neurons, which are sensitive to kinetic edges, are selective to border-ownership (magnocellular B cells). A distinct population of model V2 neurons is selective to border-ownership in figures defined by luminance contrast (parvocellular B cells). B cells in model V2 receive feedback from neurons in V4 and MT with larger receptive fields to bias border-ownership signals toward the figure. We predict that neurons in V4 and MT sensitive to kinetically defined figures play a crucial role in determining whether the foreground surface accretes, deletes, or produces a shearing motion with respect to the background.This work was supported in part by CELEST (NSF SBE-0354378 and OMA-0835976), the Office of Naval Research (ONR N00014-11-1-0535) and Air Force Office of Scientific Research (AFOSR FA9550-12-1-0436). (NSF SBE-0354378 - CELEST; OMA-0835976 - CELEST; ONR N00014-11-1-0535 - Office of Naval Research; AFOSR FA9550-12-1-0436 - Air Force Office of Scientific Research)Published versio

    Neural dynamics of feedforward and feedback processing in figure-ground segregation

    Get PDF
    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation

    Neural models of inter-cortical networks in the primate visual system for navigation, attention, path perception, and static and kinetic figure-ground perception

    Full text link
    Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs). Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours. Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals

    The Traveling Salesman Problem in the Natural Environment

    Get PDF
    Is it possible for humans to navigate in the natural environment wherein the path taken between various destinations is 'optimal' in some way? In the domain of optimization this challenge is traditionally framed as the "Traveling Salesman Problem" (TSP). What strategies and ecological considerations are plausible for human navigation? When given a two-dimensional map-like presentation of the destinations, participants solve this optimization exceptionally well (only 2-3% longer than optimum)^1, 2^. In the following experiments we investigate the effect of effort and its environmental affordance on navigation decisions when humans solve the TSP in the natural environment. Fifteen locations were marked on two outdoor landscapes with flat and varied terrains respectively. Performance in the flat-field condition was excellent (∼6% error) and was worse but still quite good in the variable-terrain condition (∼20% error), suggesting participants do not globally pre-plan routes but rather develop them on the fly. We suggest that perceived effort guides participant solutions due to the dynamic constraints of effortful locomotion and obstacle avoidance

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF
    corecore